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Abstract

Lake Eibsee, Garmisch-Partenkirchen, 16 to 18 November, 2017: The European Stroke Organisation convened >120

stroke experts from 21 countries to discuss latest results and hot topics in clinical, translational and basic stroke

research. Since its inception in 2011, the European Stroke Science Workshop has become a cornerstone of

European Stroke Organisation’s academic activities and a major highlight for researchers in the field. Participants include

stroke researchers at all career stages and with different backgrounds, who convene for plenary lectures and discus-

sions. The workshop was organised in seven scientific sessions focusing on the following topics: (1) acute stroke

treatment and endovascular therapy; (2) small vessel disease; (3) opportunities for stroke research in the omics era;

(4) vascular cognitive impairment; (5) intracerebral and subarachnoid haemorrhage; (6) alternative treatment concepts

and (7) neural circuits, recovery and rehabilitation. All sessions started with a keynote lecture providing an overview on

current developments, followed by focused talks on a timely topic with the most recent findings, including unpublished

data. In the following, we summarise the key contents of the meeting. The program is provided in the online only

Data Supplement.

The workshop started with a key note lecture on how to improve the efficiency of clinical trial endpoints in stroke,

which was delivered by Craig Anderson (Sydney, Australia) and set the scene for the following discussions.
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Session I: Acute stroke treatment and

endovascular therapy (Bart van der Worp,

the Netherlands, and Urs Fischer,

Switzerland)

Carlos Molina, Spain, discussed reperfusion failure

and current challenges in endovascular treatment for

ischaemic stroke

In patients with acute ischaemic stroke caused by
occlusion of a proximal intracranial artery of the ante-

rior circulation, endovascular treatment (EVT) strong-

ly increases the chance of a good outcome.1 As with
thrombolysis with alteplase, the benefit of EVT is

greater the earlier treatment is started.2 The initial evi-
dence of benefit of EVT was largely limited to patients

in whom treatment could be started within 6 h of symp-

tom onset,3–7 but recent evidence suggests that in
highly selected patients with acute ischaemic stroke

who have a considerable mismatch between clinical

deficit and infarct volume, EVT is of benefit up to 24
h.8 Although in recent trials EVT was associated with a

19% absolute reduction in the risk of a poor outcome,

29–67% of the patients randomised to the intervention
arm were dead or dependent at three months.3–7

This high risk of poor outcome after EVT may be

explained by (1) the presence of a large infarct core and
lack of salvageable brain tissue before recanalisation;

(2) failure to recanalise the occluded artery adequately

and (3) incomplete microvascular reperfusion despite
adequate recanalisation of the occluded artery.

Strategies and research to improve outcomes after

intra-arterial therapy should therefore aim at: (1)
reducing the time between symptom onset and recan-

alisation, preferably in combination with treatments

preventing irreversible tissue damage before recanalisa-
tion; (2) increasing rates, speed and degree of successful

recanalisation (first-pass Thrombolysis in Cerebral
Infarction scale [TICI] 3) through better treatment

techniques and (3) prevention of incomplete microvas-

cular reperfusion, for example with the use of antith-
rombotic drugs during the procedure. In addition, the

access to EVT should be optimised for patients with

proximal intracranial artery occlusion.

Eivind Berge, Norway, gave an overview of

thrombolytic agents for the treatment of acute

ischaemic stroke

Thrombolytic agents studied most extensively in

patients with acute ischaemic stroke are alteplase, strep-

tokinase, desmoteplase and tenecteplase. Alteplase has
been shown to be effective when given within 4.5 h of

stroke onset,9 and is the only drug licensed for the

treatment of acute ischaemic stroke. Streptokinase

and urokinase have been associated with a high bleed-

ing risk.10 Desmoteplase has high fibrin specificity, but

was not effective when given 3–9 h after stroke onset.11

Tenecteplase also has high fibrin specificity, and has a

long half-life in plasma. It seems to have comparable

effects to alteplase,12 and has the practical advantage

that it can be administered as a bolus injection.

Philip Bath, United Kingdom, highlighted the

potential of nitroglycerin treatment in stroke

Preclinical studies and small clinical trials suggest that

nitroglycerin (glyceryl trinitrate) reduces death and

improves outcome after ischaemic stroke or intracere-

bral haemorrhage.13 Large ongoing trials (Rapid

Intervention with Glyceryl trinitrate in Hypertensive

stroke Trial-2 [RIGHT-2],14 Multicentre Randomised

trial of Acute Stroke treatment in the Ambulance with

a nitroglycerin Patch [MR ASAPJ]) are investigating

the safety and efficacy of nitroglycerin started in the

prehospital setting. Ambulance-based trials create

new design issues: (1) limiting recruitment of stroke

mimics; (2) tightening trial stopping rules so that

trials testing low cost and potentially efficacious inter-

ventions can be large; (3) enhancing statistical efficien-

cy through global analysis of ordinal or continuous

outcome variables; (4) using hierarchical analysis of

the primary outcome, first in the target population of

stroke and transient ischemic attack (TIA), and second

in all patients, including stroke mimics.

Peter Kelly, Ireland, discussed the acute treatment

of TIA and minor stroke

The TIARegistry.org project gave an insight into the

modern natural history of patients with TIA or mild

ischaemic stroke treated with state-of-the-art stroke

specialist services. In 4789 patients, 87.6% sought atten-

tion and 78% were treated by a stroke specialist within

24 h, with very high rates of antiplatelet and other pre-

ventive therapies. Recurrence rates were low (e.g. 2.1%

at seven days), demonstrating that early treatment is the

key priority regardless of clinical setting.15 Early treat-

ment with alteplase is of benefit in patients with mild

ischaemic stroke, defined as National Institutes of

Health Stroke Scale (NIHSS) 0–5, with a low risk of

symptomatic intracranial haemorrhage.9

Kennedy Lees, United Kingdom, addressed the

major challenges in clinical trials

He contrasted the considerable cost and complexity of

generating randomised trial data against the potentially

confounded, observational data. Small but
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unrecognised advantages of one routine treatment over
another could have substantial population benefit, if
identified and widely applied. Although registry-based
and platform trials offer some streamlining of research,
barriers persist around funding, enrolment, regulatory,
ethical, consent, monitoring and reporting issues.
Research questions could be developed within simple
registries by recording topics that generate clinical
uncertainty, and then developing these incrementally
towards recording of clinicians’ treatment choices
that were effectively based on complete uncertainty
(quasi-randomisation) and of any factors that may
have informed their choice. This methodology may
reduce confounding and bias associated with interpre-
tation of registry data, while minimising the financial
and administrative burden.

Session II: Small vessel disease

(Joanna Wardlaw, United Kingdom, and

Frank-Erik de Leeuw, the Netherlands)

Costantino Iadecola, USA, addressed current
mechanistic concepts underlying small vessel disease

He highlighted key points about control of cerebral
blood flow, noting that about 60% of flow regulation
occurs in vessels outside the brain (40% in extracranial
arteries, 20% in pial arterioles). The other 40% of the
regulation is thought to reside in penetrating arterioles,
capillaries and venules, the arterioles being the predom-
inant site of flow control and a key target of pathology.
The role of capillaries in blood flow regulation is still
controversial. He also noted that the innervation of pial
arterioles is by autonomic nerves originating outside the
brain, but the role of these remains unclear. He
highlighted the strong trophic interactions between dif-
ferent cell types, for example neurons produce vascular
growth factors and vessels produce neuronal growth
factors. He discussed the relevance of perivascular
spaces as a route to clearance of brain interstitial fluid
and amyloid beta, noting that amyloid beta is produced
from synaptic activity. Therefore, failure of neurovas-
cular coupling (NVC), e.g. through dysfunctional neu-
rovascular units, could lead to failure to clear amyloid
beta out of the brain, potentially leading to a spiral of
amyloid accumulation in microvessel walls and perivas-
cular spaces, further adding to the microvessel
dysfunction.16,17

He then described the cerebral microvascular dys-
function that occurs in hypertension. This also results
in oxidative stress involving the perivascular space.18,19

Both the neurovascular and cognitive dysfunction are
mediated via effects on the blood–brain barrier, entry
of angiotensin (Ang) II into the perivascular space to

act on Ang I type receptors on perivascular macro-

phages, and release of NOX2-derived reactive oxygen

species from the latter cells. He described a clear role

for similar pathways in genetically induced models of

Alzheimer’s Disease (AD), which are also worsened by

hypertension, where the neurovascular dysfunction is

paralleled by cognitive dysfunction, and which can be

ameliorated by selective depletion of perivascular mac-

rophages or CD36.20 Amyloid beta applied to the

cortex or administered intravenously results in release

of reactive oxygen species and induces profound micro-

vascular dysfunction, indicating a potential vicious

cycle of vascular dysfunction accelerating AD pathol-

ogy and vice versa, explaining the long-observed vas-

cular dysfunction seen in prodromal stages of AD.

Joanna Wardlaw, UK, discussed novel risk factors

for small vessel disease from early life

She summarised data from over 5,000,000 subjects

showing associations of lower educational attainment,

lower childhood IQ and lower socioeconomic status,

with increased risk of stroke in later life,21 and increased

risk of small vessel disease (SVD) lesions on imaging.22

Recent data indicate that the three childhood factors

increase risk independently of each other and of adult

risk factors (in preparation) and show an inverse rela-

tionship between lower childhood IQ and age at

stroke;23 education may modify the impact of IQ on

stroke risk by improving reasoning skills and ameliorat-

ing adverse effects of exposure to socioeconomic stress.

Future studies should, where feasible, adjust for IQ,

education and childhood socioeconomic status.

Eric Jouvent, France, discussed the wider effects

of SVD on the brain, particularly in the cortex

He showed that while some morphological aspects of

the cortex are preserved during the course of SVD,24

the cortical mantle undergoes important morphological

alterations, including a loss of cortical surface area. In

rare occasions, in advanced SVD, this involves some

focal areas of cortex disintegration superficial to areas

of severe white matter damage.25 In passing, he insisted

on caution when using automated image processing

methods that are prone to interpret any cortical

change as cortical thinning, since these distort real

tissue shapes particularly in diseased brains.

Marco Düring, Germany, discussed new markers

for characterising brain damage in SVD

The heterogeneity of mean diffusivity (MD) in ske-

letonised white matter is proving to be sensitive to

altered white matter integrity, is available to download
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(www.psmd-marker.com) and is resistant to between-
scanner variation.26 Bi-tensor diffusion tensor imaging
(DTI), being applied in CADASIL and sporadic SVD,
demonstrates that increased water content in the brain
is the major determinant of the diffusion imaging alter-
ations seen in normal-appearing and abnormal tissues
in SVD, rather than presumed demyelination.27 The
level of neurofilament light chains in the blood is relat-
ed to cognition and is a more sensitive measure than
conventional SVD imaging markers.28,29

Susanne van Veluw, USA, reflected on the benefits
of 7T MRI in SVD

She demonstrated that 7T MRI can assess blood flow
velocity in individual perforating arterioles,30 and
topographical associations between cortical micro-
bleeds and perivascular spaces in cerebral amyloid
angiopathy (CAA). Next, she focused on (the limits
of) microbleed and microinfarct detection in CAA.
Microbleeds often escape detection on neuropathology,
whereas MRI is very sensitive to microbleeds. In con-
trast, microinfarcts are commonly observed at autopsy,
but vastly under-recognised in vivo even at 7T MRI.31

Despite the underestimation of total microinfarct
burden with MRI, a small proportion can be seen at
lower field strengths.32

Session III: Opportunities for stroke

research in the omics area (Stephanie

Debette, France, and Bo

Norrving, Sweden)

Nilesh Samani, United Kingdom, provided an
overview of clinical applications of genetics to
cardiovascular disease

In the last decade, large-scale genome-wide association
studies (GWAS) have started to provide insights into
the genetic determinants of complex cardiovascular dis-
eases such as coronary artery disease (CAD), stroke
and atrial fibrillation, which have a substantial genetic
basis in addition to well-established lifestyle and demo-
graphic risk factors.33 For instance, almost 100 loci
associated with risk of CAD have been identified.
The association of each locus with risk is modest with
a 5–30% increased population risk per copy of the risk
allele. However, the risk alleles are very common in the
population. What have we learnt from these discoveries
and what are the clinical implications? First, only
about 40% of the loci for CAD are associated with
conventional cardiovascular risk factors such as lipids
and blood pressure suggesting that other hitherto
unrecognised mechanisms contribute causally to its

pathogenesis.34 This is illustrated by the first CAD
GWAS locus at 9p21, which currently appears to
affect CAD risk through the action of a long non-
coding RNA (ANRIL). Second, using Mendelian ran-
domisation, the genetic data have allowed researchers
to test whether the association of multiple biomarkers
with CAD is causal or due to confounding or reverse
causation. This is of profound importance in selecting
the right biomarkers for therapeutic targeting. These
studies have revealed, for example, that the associa-
tions of high-density lipoprotein cholesterol (HDL)-
cholesterol or C-reactive protein with CAD risk are
probably not causal, leading to re-evaluation of these
molecules as targets for therapy. On the other hand, the
studies have demonstrated that plasma triglyceride,
often considered a bystander, is a causal risk for
CAD and highlighted the boosting of the activity of
lipoprotein lipase as a promising therapeutic target.

Finally, genetic risk scores based on identified loci
were found to add to conventional risk scores (e.g.
Framingham) in risk evaluation and shown to stratify
groups of individuals into very different life-long tra-
jectories of CAD risk.35 Studies have shown that both
lifestyle changes and medication (statins) can amelio-
rate genetic risk.33,36 These findings open up the possi-
bility of much earlier screening for CAD risk using
genetics and more targeted primary prevention.

Martin Dichgans, Germany, summarised data
from a recent Genome-Wide Association Study

This multiancestry GWAS in over 65,000 patients with
stroke and 450,000 controls revealed numerous novel
risk loci for stroke and for aetiological stroke sub-
types.37 The study revealed substantial genetic overlap
with related vascular traits at individual loci, and on a
genome-wide level. Several of the novel loci have pre-
viously not been implicated in stroke pathophysiology
and therefore point to novel mechanisms. Prioritisation
of relevant risk variants and genes was achieved by
integrating data on gene and protein expression
amongst other information. The talk further highlight-
ed the potential of GWAS for drug discovery and drug
repurposing.

Stephanie Debette, France, provided an update on
genomics of imaging-defined cerebrovascu-
lar phenotypes

MRI markers of covert vascular brain injury, mainly
reflecting underlying cerebral SVD are highly prevalent
in older community persons. They are associated with
an increased risk of incident stroke, dementia and
death. Recently, large collaborative efforts have
enabled the identification of several loci associated
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with white matter hyperintensity (WMH) burden, sug-

gesting a possible involvement of glial proliferative

pathways,38 and developmental factors such as mural

cell differentiation.39 Some WMH risk variants are

associated with both ischaemic and haemorrhagic

stroke.38–40 No robust associations have been identified

yet for other MRI markers of SVD, although some like

dilated perivascular space burden appear to be highly

heritable.41

David Tregouet, France, discussed recent advances

and perspectives of multiomics approaches

During the last 30 years, the evolution of the genetic

epidemiology discipline paralleled the development of

high-throughput technologies. For several decades, the

research community has been strongly focused on the

identification of genetic markers associated with

human complex diseases. The recent development of

high density DNA/RNA arrays and next generation

sequencing technologies strongly boosted the field.

From now on, it is time to interrogate other molecular

phenotypes in addition to genetic variation, including

metabolites and proteins, through new high-

throughput techniques,42,43 and to integrate their anal-

ysis with that of epigenetic data,44 in order to deeply

disentangle the complex architecture underlying

common diseases. This opens the era of

epidemiolomics.

Elisabeth Tournier-Lasserve, France, presented

recent data on the genomics of Mendelian cerebral

small vessel disease

Targeted sequencing of known cSVD genes in adult

probands with a familial history of cSVD identifies

the causative mutation in <15% of patients despite

the identification of multiple cSVD genes in the last

20 years. The combination of pan-genomic linkage

analysis and whole exome sequencing of well-

characterised families led to the recent identification

of the causative anomaly in PADMAL (Pontine

Autosomal Dominant Microangiopathy and

Leukoencephalopathy).45 PADMAL mutations are

located in the 30UTR of COL4A1.46 These non-

coding mutations affect a binding site for a

microRNA regulating COL4A1 expression and, in con-

trast with mutations affecting COL4A1 glycin residues,

they lead only to lacunar infarcts, causing neither cere-

bral haemorrhage nor systemic manifestations. This led

to the hypothesis that other anomalies such as duplica-

tions of COLA41 may cause cSVD, which was con-

firmed by copy number analysis in several families.

Session IV: Vascular cognitive impairment

(Martin Dichgans, Germany, and Geert

Jan Biessels, the Netherlands)

Edo Richard, the Netherlands, discussed multi-

domain interventions for dementia prevention from a

population perspective

The prevalence of dementia is expected to rise dramat-

ically over the coming decades, which is mostly attrib-

utable to low and middle-income countries (LMIC).

Results from observational cohort studies in Europe

show a rather stable age-specific prevalence, but a

decreasing age-specific incidence across all age

strata.47,48 Registration data show a seemingly contra-

dictory stable age-specific incidence.49 Although diag-

nostic drift and increased attention for dementia may

inflate incidence rates in registration data, they better

reflect the actual burden on healthcare systems.
Thirty per cent of dementia is attributable to seven

potentially modifiable risk factors, with their most det-

rimental effect at different points in life.50 Complex

relationships between risk factors and dementia com-

plicate the design of optimally tailored interventions to

prevent dementia. Due to societal changes, the relation-

ships between risk factors and dementia that we know

from birth cohorts from the 20s and 30s, may not be

applicable in the current generation of people in their

50s and 60s.
Three large multi-domain intervention trials to pre-

vent cognitive decline or dementia have been per-

formed.51 In the preDIVA trial, six- to eight-year

four-monthly visits to a practice nurse to optimise vas-

cular risk management did not prevent dementia.52 In

those with untreated hypertension, this type of inter-

vention may be effective. In the Finnish Geriatric

Intervention Study to Prevent Cognitive Impairment

and Disability (FINGER) trial, two-year multi-

domain intervention including cognitive training led

to improvement of cognitive functioning, which was

slightly better in the intervention vs. the control

group.53 There is no evidence for an effect in stroke

populations.54

It is currently unknown who should be targeted,

when an intervention should take place and what the

optimal intervention to prevent dementia is.

Considering the dramatic increase in LMIC, dementia

prevention strategies should be cheap, easy to imple-

ment on a large scale, in a variety of healthcare settings.

eHealth interventions, such as the Healthy Ageing

Trough Internet Counselling in the Elderly

(HATICE) intervention, may be one solution to this

challenge and can be tested in large pragmatic trials.55
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Michael Brainin, Austria, discussed the role of vascular

prevention asking “Is there any hope after HOPE-3?”

The Heart Outcomes Prevention Evaluation (HOPE)-3
study tested antihypertensives and statins in a large
cohort of persons with intermediate risk of suffering
a vascular event including stroke.56 While statins
were effective in preventing all types of vascular end-

points, the antihypertensive arm showed a preventive
effect only in persons with high blood pressure entry
values of more than 143 mmHG systolic but not in
those with lower values. Of future studies, HOPE-4 is
currently ongoing and promises more data on the effi-
cacy of life-style changes and the ‘Cut Stroke in Half’

study of the World Stroke Organisation is in prepara-
tion. Overall, multicompartment drugs or ‘Polypills’
hold great promise not only for cardiological endpoints
but also for primary prevention of stroke.

Carole Dufouil, France, provided an overview on the
methodological challenges inherent to the study of

vascular cognitive decline

Clinical and population research on dementia and cog-
nitive decline faces several methodological challenges,
including right and interval censoring (including non-
random dropouts during follow-up), competing risks of
death and time-varying covariates. The research litera-
ture reflects little consensus on best practices to account
for these challenges. Methods were discussed that may

optimise the accurate identification of predictors of
vascular cognitive decline and dementia, an important
pre-requisite to facilitate the development of efficient
preventive and therapeutic strategies.57 This is particu-
larly relevant to the study of clinical, imaging and
molecular vascular biomarkers for predicting dementia

risk of cognitive decline trajectories.

Terry Quinn, UK, discussed the concept and clinical

implications of transient cognitive impairment

Classical neurological teaching suggests that transient
cognitive symptoms are rarely cerebrovascular in
origin. Recent evidence challenges this stance.
Ischaemic lesions causing temporary amnesia are
described but are infrequent. Much more prevalent is
a syndrome of multi-domain cognitive impairment, evi-

dent immediately post-stroke and improving over days
to weeks. A label of transient cognitive impairment
(TCI) has been proposed but this description is poten-
tially misleading as the presence of these ‘transient’
impairments is associated with poor longer-term cog-
nitive outcomes. The clinical picture and natural histo-

ry of TCI are similar to delirium and the two
conditions may be related or even synonymous.58,59

Leif Ostergaard, Denmark, provided an overview on

capillary pathways to stroke and cognitive decline

Changes in capillary morphology and function, so-

called capillary dysfunction, may limit oxygen avail-

ability in brain tissue by shunting oxygenated blood

through the microcirculation, although blood supply

is inconspicuous.60 Capillary dysfunction has now

been demonstrated in Cerebral Autosomal Dominant

Arteriopathy with Subcortical Infarctions and

Leucoencephalopathy (CADASIL)61 and AD,62 and

estimates of tissue hypoxia correlate with cognitive

decline in AD.63 In acute ischaemic stroke, early recan-

alisation largely restores capillary function, while pen-

umbral infarction is associated with capillary flow

disturbances, possibly caused by per-ischaemic capil-

lary occlusions.64 The talk discussed whether vascular

disease pathophysiology represents a continuum

between tissue hypoxia caused by limited blood

supply at one end (e.g. brief ischemia) and by capillary

dysfunction (e.g. AD), at the other.65

Session V: Intracerebral and subarachnoid

haemorrhage (Gabriel Rinkel, the

Netherlands, and Charlotte

Cordonnier, France)

Thorsten Steiner, Germany, provided an overview of

trials on blood pressure lowering in the acute phase

after ICH, and whether we need additional ones

after INTERACT-2 and ATTACH-2

The three large randomised trials on blood pressure

lowering in acute intracerebral haemorrhage (ICH)

demonstrated that intensive lowering of systolic blood

pressure below 140 mmHg may decrease hematoma

expansion,66 but does not improve clinical out-

come.67,68 A meta-analysis including these and 2

smaller randomised trials (n< 100) found no effect.69

There are two main reasons - among several others -

for why trials failed to show a positive clinical effect:

First, the baseline hematoma volume was too small

with an average baseline volume in the two largest

trails (Intensive blood pressure reduction in acute cere-

bral haemorrhage trial-2 [INTERACT-2] and

Antihypertensive Treatment of Acute Cerebral

Hemorrhage II [ATTACH-2]) of about 11 mL,45,46

which might have left too few patients with hematoma

expansion. Second, time to start of treatment was too

late with an average time to start of treatment of 5.7

h in these trials: The post hoc analyses of the Factor

Seven for Acute Hemorrhagic Stroke (FAST) trial on

the use of recombinant factor VIIa in spontaneous ICH
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revealed that the odds of severe disability or death is
increasing beyond 2.5 h after onset.

Thus, a positive effect of blood pressure lowering on
clinical outcome has not been excluded, and further
trials are needed. The corner stone of the design
should be to lower blood pressure as soon as possible,
meaning start of treatment instalment within 2.5 h, and
use of fast-acting anti-hypertensives with short half-life
time. Baseline volume needs to be limited by an upper
threshold, as in ICH the target is prevention of clinical
deterioration, and in patients with large ICH there is
little room for deterioration, and also by a lower
threshold as too small volumes have little chance of
deterioration.

Jürgen Beck, Switzerland, discussed the question
whether interventional strategies for ICH are still
an option

Previous trials on interventional strategies for ICH,
including two recent, carefully performed trials
(Surgical Treatment for Intracerebral Hemorrhage
[STICH and STICH II])70 found no clinical benefit of
surgical removal of the hematoma. Surgical removal of
the hematoma is thought to be ineffective due to the
additional trauma to the brain. Decompressive craniec-
tomy decreases intracranial pressure without further
damage to the vulnerable brain, is a well-established
treatment for large ischaemic strokes and is therefore
a potential effective treatment for patients with ICH. A
randomised trial (SWITCH) is currently running.

Hanne Krarup Christensen, Denmark, reviewed the
relation between ICH and statins, asking the
question: No need to worry?

Some new evidence has emerged within the last two
years. In a pharmaco-epidemiological study, the risk
of ICH in patients after ischaemic stroke or TIA was
not higher in patients on statins.71 Based on a nation-
wide Swedish sample, the risk of ICH was not higher in
statin users.72 Data from patients after stroke exposed
to PCSK9-inhibitors and resulting massive LDL-
reductions in the FOURIER trial have not docu-
mented any increased risk. It is hard to rule out any
interaction between statins and risk of ICH, however,
new high-quality data do not support that statins
increase risk of ICH after stroke.

Roland Veltkamp, United Kingdom, reviewed the
question: Why don’t we use antithrombotics regularly
after ICH?

Patients with ICH are at risk of recurrent ICH, but also
of myocardial and cerebral infarction. According to a

systematic review examining the effect of antiplatelet
therapy after ICH, there is insufficient evidence to
either support or withhold antithrombotic therapy.73

The ongoing randomised controlled REstart or STop
Antithrombotic Randomised Trial will provide essen-
tial information for best management in this setting.
For ICH patients with atrial fibrillation (AF), evidence
from meta-analyzed recent large observational studies
suggests a much higher annual rate of ischaemic stroke
than for recurrent ICH,74 but randomised trials, pref-
erably with Direct Oral AntiCoagulants (DOACs), are
needed to resolve the uncertainty. Several such trials
are currently ongoing.

Arthur Liesz, Germany, in a spotlight talk unrelated
to the session topic discussed the inflammatory
response and atheroprogression after stroke

Stroke induces a multiphasic systemic immune response
but the consequences of this response on atherosclerosis
– a major source of recurrent vascular events – are
barely investigated. Among the hallmarks of post-
stroke systemic immunity is a low-grade chronic inflam-
matory response. The Liesz group tested whether stroke-
induced systemic inflammation promotes atherosclerosis
in a murine model. They observed that stroke
exacerbated atheroprogression via alarmin-mediated
propagation of vascular inflammation.75 The prototypic
brain-released alarmin HMGB1-induced monocyte and
endothelial activation and increased plaque load and
vulnerability. Neutralisation of circulating alarmins or
knockdown of the key receptors attenuated atheroprog-
ression. Their findings identify the stroke-induced sterile
inflammation – which is driven by brain-released alar-
mins – as a critical mechanism of exacerbated athero-
progression after stroke.

Session VI: Alternative treatment

concepts (Valeria Caso, Italy, and Heini

Mattle, Switzerland)

Krassen Nedeltchev reviewed recent trials on PFO
closure and addressed the question whether it is
time to close the discussion

Three randomised control trials (RCTs) published in
2012/2013 failed to demonstrate the superiority of
patent foramen ovale (PFO) closure over medical treat-
ment in secondary prevention of cryptogenic stroke
(CS).76–78 In 2017, the long-term results of the
Randomized Evaluation of Recurrent Stroke
Comparing PFO Closure to Established Standard of
Care Treatment (RESPECT) study79 and two subse-
quent RCTs reported less recurrent CS after PFO

212 European Stroke Journal 3(3)



closure than with antithrombotic treatment alone.80,81

Why was that? First, we now better understand PFO’s

pathogenic role. PFO is more frequent in CS patients,

compared to healthy persons, but not all PFOs in CS

are pathogenic. The PFO-attributable fraction depends

on factors like age, hypertension, diabetes, previous

stroke, smoking and stroke location.82 Second, the def-

inition of CS needs standardisation. For example, the

definition of ESUS (embolic stroke of undetermined

source) is an attempt to narrow down the population

of CS including only embolic strokes. Third, up to 87%

of recurrent strokes after PFO closure are due to alter-

native causes that either had been missed at initial

workup or had emerged after randomisation. Fourth,

improvements in closure device technology have

resulted in lower complication rates. Finally, the risk

of stroke recurrence appears to be driven by both PFO-

intrinsic (large PFO, atrial septal aneurysm, shunt at

rest) and PFO-extrinsic factors (age, CAD, diabetes).

The attributable risk of PFO-extrinsic factors is even

higher than that of PFO-intrinsic factors (91% vs.

35%, Kahles T et al., manuscript in preparation).
The preventive role of PFO closure in patients older

than 55 years remains unclear. Theoretically, the risk of

paradoxical embolism increases with advancing age

due to the accumulation of prothrombotic conditions

such as hypercoagulability, chronic inflammation and

venous stasis. However, PFO-related risk is obfuscated

by more potent vascular risk factors in older patients

and the benefit of closure is difficult to be proven.

Jean Claude Baron reported on sensory stimulation,

a novel paradigm for treating acute stroke?

Sensory stimulation (SS) increases perfusion via the

NVC. As NVC is not abolished after middle cerebral

artery (MCA) occlusion (MCAo), SS might increase

penumbral perfusion more than neuronal activity,

affording neuroprotection. In rat models, contralateral

forepaw or whisker stimulation started early after

MCAo reduced infarct volume (12/13 studies; one tem-

porary MCAo study only), sometimes spectacularly,

but benefits vanished with 2 h SS-start, while 3h SS-

start induced larger infarcts.83 Both mice MCAo stud-

ies showed no benefit or worse outcome, possibly

reflecting poorer collaterals in mice. Regarding clinical

translation, SS could easily start in the ambulance and

may benefit patients with good collaterals and exten-

sive penumbra, but the time-window seems narrow

while potential harmful effects would require close

monitoring. A safety and feasibility study in imaging-

based selected patients appears feasible.

Christine Roffe discussed normobaric oxygen in acute

stroke: Dead or still alive?

She reported on the results of the Stroke Oxygen Study,
which randomised 8003 patients with acute stroke to
supplemental oxygen or control (room air) failed to
detect benefit on early neurological recovery, mortality
and functional outcome at 90 days.84 This lack of ben-

efit was also observed in subgroups, which were con-
sidered most likely to benefit (enrolment within 6 h of
onset, severe strokes, reduced level of consciousness,
comorbid heart and lung disease).84 It may be argued
that low dose oxygen is not sufficient to affect neurons
in the ischaemic penumbra. This concept is being tested

in the PROOF trial, which will randomise patients
within 4.5 h of severe acute ischaemic stroke to
oxygen at a rate of 45 L/min.85

Daniel Strbian summarised developments in
targeting brain oedema in stroke, in a preclinical and
clinical setting

He discussed the pathophysiology of brain oedema

after ischaemic stroke and summarised development
in the field during the last 2.5 years in the preclinical
and clinical setting. He reviewed data on targeting
beta1-integrins, vascular–endothelial growth factor (a
possible target for therapy with hypertonic saline),
aquaporin channels (including a monoclonal antibody
for treatment of neuromyelitis optica), the arginine–

vasopressin pathway, glitazone receptor, lithium, oxi-
dative stress and interleukins, Ephrinb2-EphB4R guid-
ance molecules pathway, and with no lysine=K -
Ste20/SPS1-related proline-alanine-rich protein
kinases (WNK-SPAK kinase) pathway. He further pre-
sented preclinical and clinical data on the sulfonylurea

receptor, the intravenous inhibitor (glyburide). After a
Phase IIb study,86 intravenous glyburide is ready to be
tested in a Phase III trial (CHARM).

George Ntaios provided an update on
ESO Guidelines

Several European Stroke Organisation (ESO)
Guidelines are expected in, 2018 as a continuation of
the series of ESO Guidelines already available.87–90 The
ESO Guideline app91 aims to enhance the accessibility

of stroke physicians to the ESO Guidelines. To date,
six ESO Guideline Development Workshops have been
organised aiming to introduce stroke physicians to the
ESO Guideline Standard Operating Procedure. A ded-
icated ESO Guideline session is regularly included in
the program of the ESO Conference. To support these

expanding activities and serve the dedication of ESO to
improve stroke management and education, the ESO

Debette et al. 213



Guideline Committee was recently turned into the ESO

Guideline Board.

Session VII: Session VII: Neural circuits,

recovery, and rehabilitation (Daniel

Strbian, Finland, and Mathias

Endres, Germany)

Christian Grefkes, Germany, delivered a keynote

lecture on ‘Non-invasive brain stimulation after

stroke: Hope or hype?’

A large fraction of patients remain disabled despite

optimal medical and rehabilitative treatment in the

acute stroke phase. Currently, the only approved inter-

ventions to support recovery of function are training-

based methods like physical therapy or language

training. Functional neuroimaging experiments have

demonstrated dynamical changes of brain activity in

both hemispheres, which can be detected already in

the first days after stroke. Here, the best predictor for

successful functional recovery is the reappearance of

the original network architecture, e.g., a lateralised

activity pattern in the motor system for hand motor

recovery.92 Therefore, non-invasive brain stimulation

techniques like repetitive transcranial magnetic stimu-

lation (rTMS) or transcranial direct current stimulation

(tDCS) aim at supporting cortical reorganisation by

either enhancing activity in hypoactive regions in the

lesioned hemisphere, or suppressing activity in hyper-

active regions of the structurally intact hemisphere.93,94

For motor recovery, primary motor cortex (M1) has

been a frequent stimulation target in patients suffering

from hemiparesis. In the past few years, a number of

studies have been published in which motor cortex

stimulation has been paired with motor training in

order to boost intervention effects. These protocols

(10 Hz rTMS/iTBS over ipsilesional M1, 1 Hz rTMS

over contralesional M1) induce a significantly better

recovery of motor functions compared to sham stimu-

lation. Neuroimaging data obtained from these studies

revealed that patients receiving verum stimulation fea-

tured not only changes of brain activity in the stimu-

lated region, but also in connected areas in both

hemispheres, leading to a more physiological network

architecture compared to sham-stimulated patients.95

Therefore, non-invasive brain stimulation is capable

of inducing network-level effects which seem to facili-

tate recovery of function after stroke. RCTs with large

sample sizes are now needed in order to test these

promising stimulation protocols in the clini-

cal routine.96

Ulf Ziemann, Germany, reported on therapeutic
network modulation by individualised non-invasive
brain stimulation

Rapidly changing excitability states in oscillating brain
networks may explain variability and limited effect size
of open-loop therapeutic brain stimulation. When
millisecond-resolution electroencephalography-trig-
gered transcranial magnetic stimulation (EEG-TMS)
was applied in healthy subjects to target specific
phases of the sensorimotor m-rhythm in one study, it
was shown that the negative vs. positive EEG peak of
the m-rhythm represented high- vs. low-excitability
motor states. Moreover, identical repetitive TMS trig-
gered consistently at this high-excitability vs. low-
excitability state led to long-term potentiation-like
plasticity vs. no change.97 This efficacy control of plas-
ticity induction by real-time information of brain state
can open new opportunities in therapeutic brain stim-
ulation, e.g., to enhance recovery after stroke.

Keith Muir, United Kingdom, gave an
update on stem cell therapy in stroke:
Fiction or future

Two recent multicentre Phase 2 clinical trials have
investigated early subacute treatment with intravenous-
ly delivered cells,98,99 a mode of delivery that does not
lead to CNS engraftment100 and may be neuroprotec-
tive. Further trials of the ‘multistem’ allogeneic bone
marrow derived cells line are underway in Japan and
the US/Europe. In chronic stroke, three completed
trials have investigated intracerebral implantation of
stem cells. The PISCES-1101 trial of the human neural
stem cell CTX line and SanBio102 trial of Notch1 trans-
fected bone marrow–derived mesenchymal stem cells
(SB623) both observed neurological improvement pla-
teauing three months after implantation, and associat-
ed imaging changes. Twelve-month outcome data in
Pilot Investigation of Stem Cells in Stroke Phase II
Efficacy (PISCES-2) are awaited, and further trials of
both cell types are underway.

Lonneke de Lau, The Netherlands, discussed what
we can offer to patients suffering from post-stroke
aphasia after the RATS3 trial

Aphasia occurs in about 25% of acute stroke patients
and severely affects quality of life. There is evidence for
a beneficial effect of speech and language therapy
(SLT), and evidence that intensive therapy is more
effective, but it is unknown whether efficacy of SLT
is influenced by timing of treatment. In the
Rotterdam Aphasia Therapy Study (RATS)-3 multi-
center RCT, 153 patients with first ever aphasia due
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to stroke were allocated within two weeks to either four
weeks of intensive SLT or no language therapy for four
weeks. Primary outcome was the score on the
Amsterdam-Nijmegen Everyday Language Test
(ANELT), four weeks after randomisation.

Median treatment intensity in the intervention-
group (n¼ 80) was 24.5 h. The adjusted difference in
mean ANELT scores at four weeks was non-significant
(0.39, 95% confidence interval [CI]: �2.70 to 3.47),
suggesting that early intensive SLT is not more effec-
tive than no SLT in the acute phase after stroke.103

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of

interest with respect to the research, authorship, and/or pub-

lication of this article: HBvdW had received speaker’s fees

from Bayer and Boehringer Ingelheim. The others authors

have nothing to declare.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: The European Stroke Science Workshop was sup-

ported by the European Stroke Organisation and the

Deutsche Forschungsgemeinschaft (DI 722/14–1 and

Munich Cluster for Systems Neurology, SyNergy).

Ethical approval

Not applicable.

Informed consent

Not applicable.

Guarantor

Not applicable.

Contributorship

Not applicable.

Acknowledgement

None.

European Stroke Science Workshop presenters

and co-convenors

E Tournier-Lasserve, C Grefkes, PJ Kelly, K Muir, E Berge,

DA Trégou€et, C Roffe, M Brainin, J Beck, T Steiner, LM de

Lau, E Jouvent, R Veltkamp, JC Baron, K Nedeltchev, PM

Bath, TJ Quinn, E Richard, U Ziemann, A Liesz, G Ntaios, C

Iadecola, KR Lees, H Krarup Christensen, SJ van Veluw, M

Endres, CS Anderson, CA Molina, M Düring, C Dufouil, L
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